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Abstract. 20 

The challenge of global food security in the face of population growth, conflict and climate change requires a comprehensive 

understanding of cropped areas, irrigation practices and the distribution of major commodity crops like maize and wheat. 

However, such understanding should preferably be updated at seasonal intervals for each agricultural system rather than 

relying on a single annual assessment. Here we present the European Space Agency funded WorldCereal system, a global, 

seasonal, and reproducible crop and irrigation mapping system that addresses existing limitations in current global-scale crop 25 

and irrigation mapping. WorldCereal generates a range of global products, including temporary crop extent, seasonal maize 

and cereals maps, seasonal irrigation maps, seasonal active cropland maps, and confidence layers providing insights into 

expected product quality. The WorldCereal product suite for the year 2021 presented here serves as a global demonstration 

of the dynamic open-source WorldCereal system. The presented products are fully validated, e.g., global user's and 

producer's accuracies for the annual temporary crop product are 88.5% and 92.1%, respectively. The WorldCereal system 30 

provides a vital tool for policymakers, international organizations, and researchers to better understand global crop and 

irrigation patterns and inform decision-making related to food security and sustainable agriculture. Our findings highlight the 

need for continued community efforts such as additional reference data collection to support further development and push 
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the boundaries for global agricultural mapping from space. The global products are available at 

https://doi.org/10.5281/zenodo.7875104 (Van Tricht et al., 2023). 35 

1 Introduction 

Global food security is a major challenge in the face of population growth and climate change (Rosegrant and Cline, 2003; 

Brown and Funk, 2008; Prosekov and Ivanova, 2018). A vital step in achieving the Zero Hunger sustainable development 

goal is obtaining a global view on cropped areas, particularly those that produce major commodity crops like maize and 

wheat (Fritz et al., 2013; FAO, 2022). In addition, a global perspective on irrigation practices is equally crucial to ensure 40 

sustainable and efficient use of water resources, especially as agriculture becomes more intensive and changing precipitation 

patterns affect major crop-producing regions worldwide (Fischer et al., 2007; Elliott et al., 2014). 

Such global views on crop extent, crop type and irrigation should preferably be generated at seasonal intervals for each 

agricultural system rather than as one-off or yearly products, due to the dynamic nature of growing seasons, meteorological 

conditions, agricultural practices and rotation cycles (You and Sun, 2022; Bégué et al., 2018). Moreover, recent crises such 45 

as the COVID-19 pandemic, the most extreme weather events in decades and the war in Ukraine have had a profound impact 

on global food systems and further stressed the need to capture seasonal changes in cropped areas and irrigation status for 

which to date large data gaps remain (FAO, 2022). This information can help policymakers and international organizations 

better plan and allocate resources for food production and distribution (Becker-Reshef et al., 2019). 

Crop mapping remains however a difficult task due to the diversity and complexity of agricultural systems (Liu et al., 2020). 50 

Satellite remote sensing has become an essential data source for land cover/use mapping thanks to an increased availability 

of open and free data, cloud computing infrastructure and powerful machine learning algorithms (Szantoi et al., 2020; 

Karthikeyan et al., 2020; Pandey et al., 2021). However, most global satellite-based products do not focus on one specific 

land cover class such as cropland and have to balance many land cover classes in one mapping approach, such as the 

European Space Agency (ESA) WorldCover 2021 global land cover product that maps the world in 11 distinct classes at 10 55 

m resolution (Zanaga et al., 2022). Only a few global products are dedicated to cropland. Pittman et al. (2010) presented a 

250 m cropland layer based on MODIS data where they concluded that moving from static to dynamic cropland monitoring 

applications would be the next step in global cropland mapping. Thenkabail et al. (2021) published a global cropland extent 

product at 30 m (GCEP30) for the year 2015 based on Landsat imagery and Potapov et al. (2022) presented the first time 

series of global maps of cropland extent and change based on 30 m Landsat data at 4-year intervals. Such long intervals were 60 

required to capture sufficient clear-sky observations for accurate cropland detection. While unprecedented, such existing 

initiatives are not yet fully closing the global agricultural data gaps because of one or more of the following limitations 

(FAO, 2022): (i) their specific definition of cropland precludes their usage in near real-time because they need access to 

multiple years of data; (ii) they do not cover the full thematic detail that is required for global agricultural monitoring 

purposes, including crop-specific maps for the big commodity crops such as maize and wheat; (iii) they provide a one-time 65 
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product, while the dynamic nature of agricultural landscapes requires frequent and timely updates; (iv) they do not explicitly 

account for local growing seasons which hampers crop-specific mapping in different seasons; (v) they do not provide 

information on agricultural practices at seasonal timescales, such as the occurrence of active cropland or the application of 

irrigation in specific growing seasons; (vi) they exclusively provide the end product without publication of an open-source 

system that allows reproducibility, continuity and improvement of these products; and (vii) they have limited local 70 

applicability in areas with less training data. 

In the framework of the ESA’s WorldCereal project, we aimed to address these current existing limitations, pushing the 

boundaries on global-scale, seasonal, and reproducible crop and irrigation mapping by building an open-source and highly 

scalable system with the potential to generate globally consistent maps that can be locally finetuned if users add their own 

training data. In this research, we present the range of WorldCereal products that have been generated for the year 2021 at 75 

global level. This includes (i) an annual temporary crop map, (ii) seasonal maize and cereals (wheat + barley + rye) maps, 

(iii) seasonal active irrigation maps, (iv) seasonal active cropland maps and (v) confidence layers related to the individual 

products. The complete 2021 WorldCereal product suite demonstrates the capabilities of the dynamic open-source 

WorldCereal system on a global scale, emphasizing the importance of continuing its development beyond the 2021 

showcase. This product suite can also act as a foundation for an operational worldwide crop monitoring system, thereby 80 

contributing to the achievement of the Zero Hunger sustainable development goal. 

2. Definitions  

2.1 Annual temporary crop map 

Land cover maps typically contain a cropland class, but this class is not always consistently defined (Tubiello et al., 2023). 

The base product that is generated by the WorldCereal system is an annual temporary crop map. This is a binary map 85 

identifying land used for crops with a less-than-one-year growing cycle which must be newly sown or planted for further 

production after the harvest (FAO, 2023). Sugar cane, asparagus and cassava are also considered as temporary crops, despite 

the fact that they remain in the field for more than one year. The WorldCereal temporary crop maps exclude perennial crops 

as well as (temporary) pastures. These maps are generated once a year, the period being defined in a region by the end of the 

last growing season that is considered by the system (cfr. Sect. 2.2). 90 

2.2 Crop seasonality 

Agriculture is dynamic in nature with different crops being grown in different seasons throughout the year depending on 

local growing conditions. A global crop mapping system should therefore include a definition of growing seasons that reflect 

regional patterns. This is particularly challenging in equatorial areas that exhibit no clear winter-summer seasonality and are 

often characterized by multiple growing seasons in a calendar year that follow the spatial and temporal variability of 95 
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precipitation patterns in addition to local agricultural practices (Jägermeyr and Frieler, 2018; Franch et al., 2022). As part of 

the WorldCereal system, Franch et al. (2022) developed gridded global crop calendars at 0.5 ° resolution for maize and 

wheat, leveraging the main existing global crop calendar products: GEOGLAM Crop Monitor, the United States Department 

of Agriculture Foreign Agricultural Service (USDA-FAS), the Food and Agriculture Organization (FAO) and the Joint 

Research Centre’s Anomaly Hot-Spots of Agricultural Production (ASAP). Given the global extent of the WorldCereal 100 

products and the gaps that existing products exhibit at this scale, crop calendars were simulated in those areas not covered by 

any of these products (Franch et al., 2022). The resulting crop calendars were used to stratify the globe into zones with 

similar maize and wheat growing seasons (Sect. 3.3) which form the basis for tasking the WorldCereal system to generate 

the products (Sect. 4). The crop calendars consist of one major wheat season and up to two maize seasons. Spring cereals 

grown at northern latitudes generally exhibit the same seasonality as maize in those regions and are therefore not 105 

characterized by a separate growing season. 

2.3 Seasonal crop type maps 

The WorldCereal crop type products provide binary maps for the maize and wheat growing seasons as defined by the global 

crop calendars, showing where maize and cereals are grown. Cereals include wheat, barley and rye, which belong to the 

Triticeae tribe. These crops were grouped together because their spectral signatures and growing seasons were too similar to 110 

reliably distinguish them at a global scale. The WorldCereal crop type maps are generated within the respective annual 

temporary crop mask (Sect. 2.1). 

2.4 Seasonal active irrigation maps 

Irrigation can be applied in many ways, some of which are easier to detect from space than others. Additionally, the reason 

to irrigate might differ per crop and region (Burt et al., 2000). For example, in some countries, only the most valuable crops 115 

are irrigated and saved from dehydration due to a general water shortage, whilst in other countries irrigation is widely 

applied to maximize crop yield. The WorldCereal irrigation product was primarily trained using irrigation data from (semi-

)arid climate zones. This was done partly by choice (the impact of irrigation on the environment is larger in dry regions), but 

also by necessity since there is limited irrigation data available for temperate regions. Our definition, therefore, primarily 

focuses on irrigation that is applied to enable healthy crop growth, instead of maximizing crop yield. Seasonally actively 120 

irrigated cropland is therefore defined by the WorldCereal system as a piece of land that is extensively irrigated during a 

specific growing season where, without irrigation applied at regular intervals, crop growth would be significantly reduced or 

impossible. Incidental irrigation, such as irrigation that has been applied only during the sowing period of a crop, is not 

translated to actively irrigated cropland. A pixel can only be classified as being irrigated inside the annual temporary crop 

mask. 125 
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2.5 Seasonal active cropland maps 

Assessing total crop production at regional scale does not only require an indication on where temporary crops are grown (as 

indicated by the WorldCereal temporary crop map), but also during which growing season(s) the identified areas are 

effectively in use for growing crops. To cover this need, the WorldCereal active cropland products indicate whether or not a 

pixel identified as temporary crops has been actively cultivated during a specific growing season. In order for a pixel to be 130 

labeled as “active” during a particular growing season, a full crop growth cycle (sowing, growing, senescence and 

harvesting) needs to take place within the designated time period. Note that this active marker is not crop-type specific and 

will capture other crop types aside from cereals and maize as long as they show a similar seasonality. This also means in 

practice that any crop grown (slightly) outside the predefined growing seasons will not be flagged as active cropland in any 

of the seasons covered by the system. 135 

3. Materials and methods 

In this section we outline the methodology for the creation of the WorldCereal products. While the presented products focus 

on the year 2021 at the global scale, the general methodology can be applied to other years and custom regions as well. 

3.1 Training data 

High-quality and representative training data is key to a well-performing and robust mapping system. Classification 140 

algorithms that need to be transferrable in space and time require training data that are spatially well spread and ideally cover 

as many of the agrometeorological conditions over time as possible. This reduces the risk of overfitting to specific locations, 

crop types, years and growing conditions (Cracknell and Reading, 2014; Gu et al., 2016; Pelletier et al., 2017). Within the 

WorldCereal project, a community-based, open and harmonized reference data repository at global extent was developed to 

address this need (Boogaard et al., in review). This repository currently holds around 75 million harmonized samples from 145 

2017 onward, originating from different sources such as the Group on Earth Observations Global Agricultural Monitoring 

Initiative (GEOGLAM) Joint Experiment for Crop Assessment and Monitoring (JECAM) sites, the Radiant MLHub, the 

Future Harvest (CGIAR) centres, the National Aeronautics and Space Administration Food Security and Agriculture 

Program (NASA Harvest), the International Institute for Applied Systems Analysis (IIASA) citizen science platforms 

(LACO-Wiki and Geo-Wiki), as well as from individual project contributions. Each sample contains information on either 150 

its land cover/use, crop type, irrigation status or a combination of these. A timestamp, derived as accurately as possible, 

allows to assign a sample to a specific year and growing season(s). Finally, a confidence score indicates the expected quality 

of a sample and was derived at the original reference dataset source level based on the combined expert assessment of 

spatial, temporal and thematic accuracy. A large number of samples is located in the EU and the USA, thanks to major 

contributions of European Land Parcel Identification System (LPIS) datasets and points sampled from the USDA Crop Data 155 
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Layer. These datasets were therefore subsampled for training to reduce the spatial bias and keep the amount of training input 

extractions manageable. The detailed description of this reference data module and the harmonization process followed can 

be found in Boogaard et al. (in review). Irrigation training data was especially sparse, consisting of only 36,000 rainfed and 

26,000 irrigated samples divided over 19 countries. Since this was too limited to train a global irrigation mapping system, 

manually collected samples were included. The irrigated samples of this dataset consisted of center pivot irrigation sites 160 

which were visually selected using Google Satellite and Bing Aerial base layers. A minimum NDVI peak threshold of 0.4 

was set to prevent including center pivots that were not showing any cropping activity during the training period. Rainfed 

samples were primarily collected from Europe, Northern Africa, India, Australia, and Argentina. The accuracy of this dataset 

was verified using the FAO AQUASTAT data on areas equipped for irrigation (FAO, 2016). This manual training dataset 

added another 50,000 irrigated and 30,000 rainfed samples. The resulting label density at ~5 ° resolution for land cover/use, 165 

crop type and irrigation training samples is shown in Figure 1. While the land cover samples are globally well distributed, 

strong regional differences in label availability and even large data gaps are apparent for crop type and irrigation training 

data. 

 

 170 

https://doi.org/10.5194/essd-2023-184
Preprint. Discussion started: 24 May 2023
c© Author(s) 2023. CC BY 4.0 License.



   

 

7 

 

 

Figure 1: Available label density at ~5 ° resolution for training the different WorldCereal models. (a) Land cover labels to be used 

for temporary crop mapping shows a good global spread. (b) Labels for training the crop type models exhibit large spatial gaps. 

(c) Irrigation labels are the most sparsely distributed. 

3.2 Inputs and pre-processing 175 

The satellite-based inputs used to create the WorldCereal products are optical Sentinel-2, radar Sentinel-1 and thermal 

Landsat 8 time series. Sentinel-2 optical bands were first subjected to cloud and shadow masking by applying a dilated 

version of the binarized SEN2COR scene classification mask (Main-Knorn et al., 2017). For crop type mapping, a crop-

specific Growing Degree Days (GDD) normalization step was performed on the original time series using mean daily 

temperature data from the global AgERA5 reanalysis dataset (Boogaard et al., 2020). The aim of this step is to better align 180 

the time series of identical crops that are growing under different temperature regimes. The procedure is outlined in detail in 
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Cintas et al. (2023). Next, depending on the product, either the original or GDD-normalized acquisitions were composited to 

10-day regular timestamps using a median operator. The remaining missing values due to prolonged cloudy periods were 

linearly interpolated.  

Sentinel-1 pre-processing consists first of an orbit direction selection in case both ascending and descending orbits are 185 

acquired over a region. This prevents mixing of backscatter signals under entirely different viewing conditions, but also 

increases the generalizability of the system given that in most regions of the world only one orbit direction is acquired. The 

orbit direction selection is done by retrieving the times between subsequent acquisitions and selecting the orbit direction with 

the smallest maximum temporal gap. Speckle was reduced by applying a Gamma-MAP filter with a kernel size of 7 and an 

equivalent number of looks of 3, preserving the original spatial resolution while significantly reducing speckle noise in the 190 

signal. Next, crop specific GDD normalization was done in case of crop type mapping (Cintas et al., 2023). Finally, a 12-day 

compositing was performed using a mean operator and any missing values due to for example temporary unavailability of 

the satellite were linearly interpolated.  

The Landsat 8 Collection 2 Level 2 surface temperature band ST_B10 was first masked using an eroded and dilated version 

of the mask originally delivered with the product, in turn based on the CFMask algorithm. The data were then composited 195 

into 16-day time series using a median filter. The remaining missing values in particularly cloudy periods were linearly 

interpolated. 

Next to the main satellite inputs, the workflow also makes use of ancillary data sources. We used the Copernicus DEM - 

Global and European Digital Elevation Model (COP-DEM) at approximately 30 m spatial resolution (“GLO-30”). The 

original 30 m data were resampled to 20 m spatial resolution to align with the Sentinel-2 tile grid and to be compatible with 200 

the classification workflow. Another auxiliary layer is based on biome membership. Based on the 846 ecoregions of the 

Ecoregions2017 map (Dinerstein et al., 2017), the world was stratified into 13 biomes. Biome membership allows a 

classification model for implicit grouping of training and inference data based on shared characteristics as described by their 

biome. These biomes were originally obtained as discrete vector polygons. Using these in the classification can cause the 

appearance of hard border artefacts in the products. To avoid these artefacts and reflect the natural and gradual transitions 205 

between biomes, we derived a set of continuous biome raster datasets. The original biome polygons were first simplified 

with a tolerance of 0.01 °, buffered at 0.05 ° and rasterized with a resolution of 0.01 °. The obtained raster datasets were then 

filtered with a Gaussian kernel of radius 0.5 °, with maximum amplitude of 1 at the center and zero at the borders. The 

resulting filtered biomes gradually transition from 0 to 1 in a range of 1 ° around the original discrete biome borders. This 

means that points close to the biome boundaries will have a certain degree of membership also with other nearby biomes, 210 

representing the gradual transition between different biomes. 
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3.3 Stratification 

The WorldCereal classification system aims for product generation within one month after the end of a particular growing 

season. Due to the dynamic nature of these growing seasons across the globe, we created a stratification based on the global 

crop calendars discussed in Sect. 2.2. Regions sharing similar crop calendars were grouped into 203 homogenous agro-215 

ecological zones (AEZ) that are used as a mapping trigger for the system (Figure 2). In addition, Buchhorn et al. (2020) 

reported that classification algorithms for global mapping purposes are better adapted to sub-continental and continental 

patterns if they are trained and applied at sub-global scale. Therefore, we also stratified the global terrestrial regions into 

large biogeographical realms (Figure 3) following the Ecoregions2017 dataset (Dinerstein et al., 2017). This allows model 

training at realm level instead of global level, provided that sufficient training data is available (Sect. 3.5). 220 

 

 

Figure 2: Global stratification based on crop calendar similarity. Each resulting agro-ecological zone (AEZ) serves as a 

WorldCereal map trigger to generate products based on local seasonality. 

 225 
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Figure 3: Biogeographical realms used to train localized temporary crop extent models (Dinerstein et al., 2017). 

3.4 Feature extraction 

Classification features were derived from the five data sources discussed in Sect. 3.2, i.e. optical, radar, thermal infrared, 

DEM and fuzzy biomes. Aside from the DEM and biomes, feature extraction always starts from pre-processed time series, 230 

either directly derived from the data source (e.g. Sentinel-2 reflectance bands) or a derived time series using a combination 

of multiple input variables (e.g. a spectral index). Exact timing and length of the time series was determined by the pixel-

based crop calendars for the respective products (Sect. 2.2Error! Reference source not found.). Whereas different features 

were originally computed at the native spatial resolution of the input data source for computational purposes, in the end all 

features were resampled to 10m resolution before being used as input in the classification models. In the remainder of this 235 

section, we describe in more detail the specific features that were computed for generating the different WorldCereal 

products. 

3.4.1 Temporary crop mapping features 

Mapping temporary crops using satellite data remains challenging in many regions, due to the variability in agricultural 

landscapes, spectral similarity with other land cover classes, fallow practices and cloud obstruction during the growing 240 

season (Vancutsem et al., 2013). Defining a robust and characteristic set of features that separates temporary crops from all 

other land cover classes is therefore key. From the Sentinel-2 optical pre-processed inputs, we computed the following 

vegetation indices which have a proven record for mapping cropland (Valero et al., 2016; Nakalembe et al., 2021; 

Thenkabail et al., 2021; Potapov et al., 2022): normalized difference vegetation index (NDVI), normalized difference water 

https://doi.org/10.5194/essd-2023-184
Preprint. Discussion started: 24 May 2023
c© Author(s) 2023. CC BY 4.0 License.



   

 

11 

 

index (NDWI), normalized difference greenness index (NDGI), angle on near infrared (ANIR), normalized difference 245 

moisture index (NDMI), and two normalized difference red edge indices (NDRE85 and NDRE75). The reader is referred to 

Table S1 for more information on these indices. Together with the shortwave-infrared bands B11 and B12, we summarized 

these time series using the 10th (p10), 50th (p50) and 90th (p90) percentiles as well as the interquartile range (IQR). For NDVI 

in specific, also six equidistant time series descriptors (ts0-ts5) were added to explicitly capture the temporal profile, as well 

as 12 of the temporal features describing the evolution of a crop profile based on the work by Valero et al. (2016). As for 250 

Sentinel-1 SAR features, three time series were used as the basis for feature computation, i.e. VV, VH backscatter and the 

radar vegetation index (RVI), all of which have proven their use in crop mapping studies (Kenduiywo et al., 2018; Van 

Tricht et al., 2018; Mandal et al., 2020). These time series were summarized using the p10, p50 and p90 percentiles and the 

IQR. DEM altitude and slope and fuzzy biome membership features were included as well. Finally, positional features 

latitude/longitude were also added which we call localization features. Localization features allow classification algorithms 255 

to become “spatially aware” and hence gain knowledge on where training or inference data is originating from. To avoid 

overfitting on exact combinations of latitude and longitude and at the same time reduce the risk of inferior product quality in 

data sparse regions, a random perturbation of up to 2.5° and 10° was added during training to latitude and longitude, 

respectively. The complete list of features used for temporary crop mapping is provided in Table 1. 

 260 

Table 1: Selected features for temporary crop mapping 

Data source Time series Features 

OPTICAL NDVI 

 

 

 

NDWI, NDGI, ANIR, 

NDMI, NDRE85, NDRE75, 

B11, B12 

p10, p50, p90, IQR, ts0, ts1, ts2, ts3, ts4, ts5, maxdif, 

mindif, difminmax, peak, lengthpeak, areapeak, 

ascarea, asclength, ascratio, descarea, desclength, 

descratio,  

p10, p50, p90, IQR  

 

SAR VV, VH, RVI p10, p50, p90, IQR 

DEM  Altitude, slope 

BIOMES  13 biome fuzzy membership features 

LOCALIZATION latitude/longitude Center latitude/longitude for a pixel 
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3.4.2 Crop type mapping features 

Specific crop type identification within the temporary crop mask started from a similar collection of features as for 

temporary crop mapping. To further enrich the feature set for distinguishing between different crop types, the standard 265 

deviation (STD) temporal statistic was added, in addition to the Sentinel-2 RGB bands (B02, B03, B04). We also computed 

the enhanced vegetation index (EVI) which was used to automatically detect the growing seasons in a time series, based on 

the method described by Bolton et al. (2020). Outputs of the season detection algorithm include the number of detected 

growing seasons and for each season the date of its start, peak and end. Based on these outputs, minimum, median and 

maximum of both the length and EVI amplitude for all detected seasons were derived and added as classification features. 270 

Biome and localization features, in turn, were not included because insufficient global coverage of training data was 

available to cover all possible biome and localization combinations. The full feature set is described in Table 2. The 

seasonality detection is also used in the WorldCereal system to generate a seasonal active cropland layer (cf. Sect. 2.5). 

 

Table 2: Selected features for crop type mapping 275 

Data source Time series Features 

OPTICAL NDVI 

 

 

 

NDWI, NDGI, ANIR,  

NDRE1, NDRE5, 

B2, B3, B4, B12 

EVI 

p10, p50, p90, STD, ts0, ts1, ts2, ts3, ts4, ts5, maxdif, 

mindif, difminmax, peak, lengthpeak, areapeak, 

ascarea, asclength, ascratio, descarea, desclength, 

descratio,  

p10, p50, p90, STD  

p10, p50, p90, STD 

p10, p50, p90, STD 

lSeasMax, lSeasMed, lSeasMin, aSeasMax, aSeasMed, 

aSeasMin  

SAR VV, VH, RVI p10, p50, p90, IQR 

DEM  Altitude, slope 

 

3.4.3 Irrigation mapping features 

The feature collection of the WorldCereal irrigation model focuses on optical and thermal satellite observations from 

Sentinel-2 and Landsat 8, respectively, in combination with meteorological data from AgERA5. The basic features of the 

algorithm are pure Sentinel-2 based indices, such as NDVI, NDWI, modified normalized difference water index (MNDWI), 280 
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EVI, and global vegetation moisture index (GVMI) (see Table S1). These features can explain the health of a crop or if a 

crop is experiencing any form of stress. To prevent overfitting of the model, only the p90 and STD were calculated for these 

indices and added as features to the model. The p90 explains if a crop was able to flourish, potentially because of irrigation, 

or if a crop showed clear signs of stress. The STD is used to understand how dynamic the growing season of a crop was. A 

more advanced feature based on multiple Sentinel-2 bands is the spectral (cosine) median absolute deviation (SMAD). This 285 

feature highlights the temporal variation of multiple optical bands and has a positive impact on the detection of irrigation 

(Wellington and Renzullo, 2021). Finally, also the geomedian (GM) calculated for the near-infrared and shortwave-infrared 

bands of Sentinel-2 were added to the model to emphasize the absorption patterns of chlorophyll and water. 

Second, the relation between the air temperature (Tair) and land surface temperature (LST) is used to further understand the 

stress conditions of a crop. Under well-watered conditions, the difference between Tair and LST is minimal, because the crop 290 

is cooling itself through transpiration processes. An increasing difference between Tair and LST indicates that the crop is 

unable to transpire to its maximum potential and that stomata are being closed. Additional water is necessary for the crop to 

continue growing. 

The third feature set focuses on the impact of irrigation on evapotranspiration (ET). Similar to the proposed Sentinel-2 based 

indices, ET indicates if a crop can thrive or not. Modeling the actual ET using remote sensing data is complex and requires 295 

many inputs. To increase the computational efficiency of the model, a simple relation between the reference 

evapotranspiration (ET0) and the NDVI is used to calculate the actual ET. This relation is based on the work of Kamble et al. 

(2013). The ET0 is calculated using AgERA5 data and relies on the penman-monteith equations (Allen et al., 1998). Since 

ET only explains if a crop is thriving and cannot help making a distinction between a rainfed crop in a humid climate or an 

irrigated crop in a more arid climate, precipitation data were added. The resulting precipitation deficit (Pdef) explains the 300 

difference between evapotranspiration and precipitation, where a large Pdef can be the result of extensive irrigation. From the 

Pdef time series, multiple features were calculated. The basic features are p10, p50, and p90, followed by the STD of the ET 

data. Additionally, the cumulative Pdef was calculated to understand the trend, longevity, and severity of the precipitation 

deficit. From this cumulative Pdef, the maximum and minimum were calculated, together with the maximum duration of a 

positive Pdef and the maximum slope of the cumulative Pdef curve. To conclude, also the sum divided by the length of the 305 

growing season of the ET0, ETact, and P were added as features to the algorithm. The duration of a positive cumulative Pdef, 

the maximum cumulative Pdef, and the minimum cumulative Pdef were also divided by the length of the season. These 

divisions were made to ensure that there is no bias toward regions with longer growing seasons. 

Finally, to also include the relation between soil moisture and irrigation, the optical trapezoid model (OPTRAM) was used. 

This model focuses on the relationship between shortwave infrared reflectance and the NDVI (Sadeghi et al., 2017). In this 310 

model, the shortwave infrared reflectance is converted into surface-transformed reflectance (STR). A trapezoidal model 

relies on a predefined wet and dry edge. These edges explain at which NDVI and STR value the soil is saturated or at its 

wilting point. In contrast to the original OPTRAM model, the edges are defined by grouping the STR data of one growing 
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season by discrete NDVI steps. The dry edge of each step is represented by the minimum STR value within that specific 

step. The wet edge is calculated by adding the median STR with the standard deviation of the STR to prevent the model to 315 

become too sensitive to oversaturated conditions, which is a known issue (Sadeghi et al., 2017). The final wet and dry edges 

are calculated by applying a linear regression through all the individual wet and dry edge values. For this soil moisture data, 

p50, p90 and STD were calculated and used as features. The final feature set was based on the correlation between the 

precipitation and the OPTRAM-based soil moisture content. A high correlation indicates that an increase in soil moisture is 

primarily driven by precipitation. A low correlation, on the other hand, might indicate that other factors, like irrigation, could 320 

have caused the increase in soil moisture content. For this dataset also p50, p90 and STD were calculated. Table 3 shows an 

overview of all the features used in the irrigation classification algorithm. 

 

Table 3: Selected features for active irrigation mapping 

Data source Time series Features 

OPTICAL NDVI, EVI, MNDWI, 

NDWIveg, GVMI 

B08, B11 

B02 + B03 + B04 + B08 + 

B11 + B12 

p90, std 

p90, std 

GM 

SMAD 

TIR LST - Ta p50, p90, STD 

METEO Precipitation, ETa, ET0 

Precipitation deficit 

 

SSM, SSM_adj 

Sum 

p10, p50, p90, std, cum_max, cum_min, cum_maxdur, 

cum_maxslope 

p50, p90, STD 

 325 

3.5 Classification 

The classification algorithms are based on a CatBoost model, which is a high-performance model architecture for gradient 

boosting on decision trees (Prokhorenkova et al., 2018). Input to the respective algorithms were the features listed in Tables 

1-3. The output of each model is a binary classification of the inputs into the class of interest vs. all other classes. For the 

temporary crop map, this means a binary classification of temporary crops vs. all other land cover types. For seasonal crop 330 

type maps, this means maize or cereals vs. all other crops. For irrigation maps, actively irrigated crops are mapped against 

rainfed crops. As discussed in Sect. 3.3, separate temporary crop mapping models were trained for each realm. Crop type and 

irrigation models were trained at the global level because of a lack of sufficient training samples in each individual realm. 
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The models were trained on their respective seasonal training features: we trained temporary crop models based on annual 

features; a winter cereals model was trained based on the main wheat season features; a spring cereals model was trained 335 

using the features from the maize season in selected northern zones that are known to grow spring cereals; and a maize 

model was trained on the combined features of up to two maize seasons. For each model, the training data was randomly 

divided into 70% calibration, 20% validation and 10% test samples. During training, only calibration and validation samples 

were used, while test samples were retained for performance assessment. Each model was trained with a maximum of 4000 

iterations, a depth of 8, a learning rate of 0.05 and early stopping activated after 40 rounds without improvement. The 340 

distribution of the binarized training samples is imbalanced, the degree by which depends on the availability of different 

sources of reference datasets. To cope with this imbalance, we computed the class weights that balance the distribution, 

which we then used for loss weighting to eliminate the imbalance problem. In addition to these class weights, sample 

specific weights were also adjusted based on the confidence score of the respective reference dataset they were originating 

from (cfr. Sect. 3.1). It is important to note that the models were trained on the combined training data from the available 345 

years (2017-2021) without providing year-specific information to the model. The aim was to train generalized models across 

multiple years that do not specifically require new training data in unseen years. 

As a complementary product of the binary prediction, the models also provide binary class probabilities which we used to 

assess the pixel-based model’s confidence in its prediction. Unconfident model predictions are characterized by binary 

probabilities close to 0.5, while confident model predictions are close to 0 or 1. Therefore, we defined classification 350 

confidence as a value between 0 and 100, computed using Eq. (1). 

 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = (
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦−0.5

0.5
) × 100,                  (1) 

 

 355 

where probability is the class probability of the winning class (≥ 0.5). 

3.6 Postprocessing 

Since classification was done on a per-pixel basis, no contextual information was taken into account in the workflow. This 

can lead to the so-called salt-and-pepper effect in the output product (Hirayama et al., 2019). We therefore applied the 

majority filter technique (Stuckens et al., 2000) to reduce this effect and used a kernel size of 5 pixels for the temporary 360 

crops product and 7 pixels for the crop type and irrigation products. To retain high-confident model predictions, we switched 

off majority filtering for those pixels that had a confidence of ≥ 0.85 for temporary crops and ≥ 0.75 for crop type and 

irrigation. 

Consistency between the different products was ensured during postprocessing in three ways. First, a positive crop detection 

by one of the crop type detectors in a season automatically identifies a pixel as active cropland for that particular season. 365 
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Second, a pixel marked as inactive in a season automatically sets that pixel to rainfed in the irrigation product. Third, any 

overlap between different crop type products within the same growing season was resolved by retaining the crop type with 

the highest confidence. Different seasons, even when partly overlapping, were not subject to conflict resolving as they were 

processed independently and at different times. 

3.7 Validation 370 

The validation approach differs from product to product, depending on quality and availability of reference datasets that 

were not used during model training and hence available for independent validation. 

3.7.1 Annual temporary crop maps 

We followed the guidelines for rigorous accuracy assessment provided in Stehman and Foody (2019) and Szantoi et al. 

(2021). To validate the annual temporary crop products, a new validation dataset (Lesiv et al., 2023b) was created which is 375 

completely independent from all other existing maps or reference datasets, and which is in line with the cropland definition 

and mapping period of the WorldCereal products as outlined in Sect. 2. The sampling design of the validation dataset is 

probabilistic with random distribution of sample sites. The validation sample sites were generated before the WorldCereal 

products were produced. Therefore, to avoid issues with inclusion probabilities, we selected a random sample design in equal 

area projection (Goode Homolosine). Taking into account that arable land covers approximately up to 10% of all land, the 380 

sample size consisted of 50 000 unique sample sites, with possibly up to 5000 sample sites labeled as temporary crops. 

Response design has been implemented in the Geo-Wiki application (Fritz et al., 2012) where each validation sample site has 

been visually interpreted by several experts. To decide if a sample is covered by temporary crops in a given period of time, 

the experts looked at very high-resolution Google historical imagery and Google Street level images, Microsoft Bing images, 

ESRI imagery, Planet historical data, Sentinel-2 time series, and Modis NDVI time series. The validation sample sites where 385 

the experts disagreed on temporary crop presence were revisited and revised.  

By using the new validation dataset, we calculated confusion matrices with accuracy metrics such as overall, user’s and 

producer’s accuracies. To calculate 95% confidence intervals for each metric, we applied bootstrapping with replacement 

(Szantoi et al., 2021). All the calculations were done at global level and by continents.  

3.7.2 Seasonal crop type maps 390 

The coverage and availability of crop type information for the year 2021 is limited. Therefore, to get a global overview of 

the quality of the crop type products, we decided to invest in a new crop type validation dataset (Lesiv et al., 2023a). This 

dataset was created by using a new IIASA tool, called “Street Imagery validation” (https://svweb.cloud.geo-wiki.org/) where 

users could check street level images (e.g., Google Street Level images, Mapillary etc.) and identify the crop type where it is 

possible. The advantage of this tool is that there are plenty of georeferenced images with dates, going back in time. The 395 
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disadvantage is that users need to check plenty of images where only few will clearly show cropland fields that are mature 

enough to be identified. To make the data collection more efficient, we provided our experts with preliminary maps of points 

in agricultural areas where street level images are available for the year 2021. Then, the experts checked those locations in an 

opportunistic way. In total, we collected around 3500 unique locations, distributed around the globe and matching the 

WorldCereal 2021 mapped seasons (Table 4). This dataset is completely independent from all the existing maps and 400 

reference datasets. Since it is not a subset from the training dataset, there are no potential issues related to spatial 

autocorrelation between training and validation datasets. Though, it has a limitation – the sample design is not probabilistic. 

By using the new validation dataset on crop type, we calculated a confusion matrix with metrics, which we called overall 

agreement and agreement by classes. We did not use the term “accuracy” since the sample design is not probabilistic. 

3.7.3 Seasonal active irrigation maps 405 

The amount of total land that is being irrigated differs from year to year, heavily depending on weather conditions. As it has 

been mentioned in the description of training data, there is very limited information available about actual irrigation of 

cropland fields, giving us little means to run a quantitative validation of irrigation products as such, especially by season. For 

irrigation we hence focus on a qualitative assessment, by spatially comparing the WorldCereal irrigation products with two 

open access datasets: (i) Global map of areas equipped for irrigation expressed as percentages, produced by FAO (Siebert et 410 

al., 2013); and (ii) the Landsat-Derived Global Rainfed and Irrigated-Cropland Product at 30 meters (LGRIP30) (Teluguntla 

et al., 2023). To this end, the WorldCereal seasonal irrigation products were combined into an annual product and 

subsequently (together with the LGRIP30 map) aggregated to match the resolution of the FAO map (0.083 degree). This 

combined irrigated area map describes if in any of the three seasons within the same year a pixel is being classified as 

irrigated. Finally, we have compared the WorldCereal irrigation products with data on irrigated land from The World 415 

Factbook (CIA, 2012). 

3.7.4 Seasonal active cropland maps 

Provided the strict definition of the seasonal active cropland maps, no ground truth data is available for validating this 

specific product. This marker is therefore to be used for informative purposes and only as an indication whether or not a full 

growing season was detected by the WorldCereal system. 420 

4. WorldCereal products 

The WorldCereal system was demonstrated at scale by globally following the crop calendars described in Sect. 2.2 for the 

year 2021 and generating all WorldCereal products associated with each of these seasons. The resulting seasonal products 

are listed in Table 4. A temporary crop map was generated based on one year of input data, described by the tc-annual 

season. Within the resulting temporary crop mask, winter cereals, spring cereals and maize maps were generated within their 425 
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respective seasons. Active cropland and active irrigation maps were generated for each of these seasons next to the crop type 

maps. The WorldCereal system works at Sentinel-2 tile level, with each tile being subdivided into 10x10 km blocks to 

ensure memory-efficient processing. Prior to global processing, a global agricultural mask was developed to determine 

which tiles could be excluded because of their distance to the closest agricultural area. This agricultural mask was largely 

based on the 2019 Copernicus Global Land Cover product v3 (Buchhorn et al., 2020b): each 10x10 km processing block 430 

showing a fraction of agricultural land lower than 1 % was initially excluded from the processing list. The area to be 

processed was cleaned and expanded by subsequently applying an erosion and dilation operation using a 20 and 40 km 

radius respectively. After additional cleaning through visual analysis, the mask was resampled to Sentinel-2 tile level using a 

conservative approach: only if none of the blocks within a tile were flagged as containing no cropland, the tile was excluded 

from further analysis. This resulted in a total of 11,867 out of 18,537 Sentinel-2 tiles to be processed by the WorldCereal 435 

system (see Supplementary Figure S1). All other Sentinel-2 tiles were considered to contain no temporary crops in the 

WorldCereal product layers. Of the original 203 WorldCereal AEZ across the globe (Figure 2), 106 zones intersect with tiles 

that were processed and products were therefore generated for those zones (cfr. Sect. 6). 

 

Table 4: WorldCereal seasonal products. The name of the season is provided with the associated product layers. 440 

SEASON  PRODUCT  REMARKS  

tc-annual Temporary crops map  

tc-wintercereals  Winter cereals map    

  Active cropland map    
 

Active irrigation map      
tc-maize-main /  Maize map  

 

tc-springcereals Spring cereals map Only in parts of Northern hemisphere  

  Active cropland map    

  Active irrigation map     
tc-maize-second  Maize map  

 

  Active cropland map  
 

  Active irrigation map     

 

4.1 Temporary crop extent map 

The global temporary crop extent map for 2021 shows the occurrence of at least one temporary crop over the course of one 

year at 10m resolution. The result is shown in Figure 4, where the original product was downsampled to ~0.004 ° resolution. 

Although this figure seemingly shows one global layer, it was in fact generated at different times during the calendar year for 445 

the individual zones described in Sect. 3.3, respecting their regional seasonality.  
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Figure 4: WorldCereal 2021 temporary crop extent map. The original 10m product was resampled to ~0.004 ° resolution showing 

the fraction of the original 10 m pixels that were labelled as temporary crops. This global overview consists of a mosaic of the 

individual zones for which the product was generated. 450 

4.2 Seasonal crop type maps 

The seasonal crop type maps were generated separately for each growing season defined in the individual zones (Figure 2). 

By mosaicking the individual zones, global seasonal cereals and maize maps at 10 m resolution were generated, which in 

turn were resampled to ~0.004 ° resolution (Figure 5). Maize and spring cereals were generated during the same growing 

season (tc-maize-main). Overlap between these two products was resolved during postprocessing (Sect. 3.6). No conflict 455 

resolving was done between different seasons, as these were processed independently.  
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Figure 5: WorldCereal 2021 seasonal crop type products. The original 10 m products were resampled to ~0.004 ° resolution 

showing the fraction of land covered by each crop type. These global overviews consist of a mosaic of the individual AEZ for which 460 
the product was generated. (a) Winter cereals fraction in the tc-wintercereals season. (b) Spring cereals fraction in the tc-

springcereals season. (c) Maize fraction in the tc-maize-main season. (d) Maize fraction in the tc-maize-second season. 

 

4.3 Seasonal active irrigation maps 

Similar to the seasonal crop type maps, the irrigation maps were generated separately for each growing season and then 465 

combined to an annual 10m product. The downsampled (~0.004 °) results of these irrigation maps showing the fraction of 

irrigated land is visualized in Figure 6. Areas without active irrigation are shown transparent. As with the annual temporary 

crop and seasonal crop type products, the global overview shown in Figure 6 in reality consists of the different AEZ-based 

products generated at different times in the year.  

 470 
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Figure 6: WorldCereal 2021 seasonal active irrigation products. The original 10 m products were resampled to ~0.004° resolution 

showing the fraction of irrigated land. These global overviews consist of a mosaic of the individual AEZ for which the product was 

generated. (a) Fraction of irrigated land in the tc-wintercereals season. (b) Fraction of irrigated land in the tc-maize-main/tc-

springcereals season. (c) Fraction of irrigated land in the tc-maize-second season. 475 

4.4 Seasonal active cropland maps 

Active cropland layers were generated for all seasonal layers described in Table 4. These layers show whether or not a full 

crop growth cycle (consisting of sowing, growing, harvesting) has been detected in the areas identified by the temporary 

crop mask (Sect. 4.1) within the specific season under consideration. An example is shown in Figure 7 for a region near 
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Grainfield, Kansas, USA where a mixture of winter cereals and maize were detected by the WorldCereal system in their 480 

respective seasons. Fields being labelled as active cropland in Figure 7 but not as one of the target crop types of the 

WorldCereal system indicate the presence of another crop type that follows the same seasonality as the crop for which the 

season was originally defined. 

 

 485 

Figure 7: Example of seasonal active cropland maps near Grainfield, Kansas, USA. Active cropland for (a) tc-wintercereals and 

(b) tc-main-maize seasons show different crop seasonality at parcel level. The (c) winter cereals and (d) maize maps overlap with 

active cropland for their respective season. Parcels showing up as active cropland but outside winter cereals and maize masks 

indicate other crops that follow the seasonality for which the respective crop type map was created. 

4.5 Confidence maps 490 

Temporary crop extent, crop type and irrigation maps all have related confidence layers as described in Sect. 3.5. As an 

example, Figure 8 shows the global confidence layer associated with the temporary crop extent product (Figure 4). Regions 

of low confidence indicate that the model struggles to provide a reliable prediction, in turn meaning that in those locations 

the feature values used as predictors do not clearly relate to one of the two binary classes being mapped. Several reasons can 

be identified that may cause unreliable predictions. The most straightforward explanation is a training data gap in a specific 495 

region where the feature values do not resemble any of the combinations seen during model training in which case 

extrapolation by the model fails. Mixed pixels can also explain lower confidence, for example on the border of agricultural 
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fields where a pixel could include both temporary crops and another land cover class. A third explanation relates to specific 

agrometeorological conditions that are too different from what the model has learned. In this case, although a region could 

be covered by training data from a different year, the features from the mapping year are too different resulting in model 500 

confusion. A fourth explanation is the degree of cloud obstruction in the optical observations during the growing season. 

While this is partly tackled by the inclusion of radar inputs into the classification, the lack of a clear crop growth cycle in the 

optical inputs can significantly deteriorate crop detection performance. A last possible explanation is related to noise in the 

training data, either because of inconsistent class definitions or temporal, thematic and/or geolocation inaccuracies. This 

confuses the model in such way that conditions similar to the noisy training data lead to low-confidence and potentially 505 

wrong predictions. Apart from mixed pixels which are linked to the input data resolution, the most straightforward solution 

to improve model confidence is to gather additional training data that fills the knowledge gap. Low confidence regions could 

therefore point the community to targeted training data collection efforts where it is mostly needed to help boost model 

confidence and accuracy. 

 510 

Figure 8: WorldCereal 2021 temporary crop extent mapping confidence. The original 10m product was resampled to ~0.004° 

resolution showing the mean confidence of the original 10 m pixels. 

5. Product validation 

Table 5 summarizes the results of the annual temporary crop extent validation at global level and by continent. It includes 

overall accuracy, user’s and producer’s accuracies, as well as 95 % confidence intervals calculated by applying 515 

bootstrapping with replacement. The most informative are user’s and producer’s accuracies, which are 88.5 % and 92.1 %, 

respectively for the globe. Overall, high accuracy numbers are observed for most continents, while somewhat lower 
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accuracies are observed in Asia and Africa. As expected based on agricultural landscape complexity in combination with 

large training data gaps, Africa has the lowest accuracy numbers. 

 520 

Table 5: Summary of accuracy estimates for the WorldCereal temporary crop product by regions. 

World 

regions 

Overall 

accuracy 

95% confidence 

intervals for overall 

accuracy 

User's 

accuracy 

for cropland 

95% confidence 

intervals for user's 

accuracy 

Producer's 

accuracy for 

cropland 

95% confidence 

intervals for 

producer's accuracy 

lower 

bound 

upper 

bound 

lower 

bound 

upper 

bound 

lower 

bound 

upper 

bound 

Global  97.8% 97.8% 97.9% 88.5% 88.0% 89.0% 92.1% 91.7% 92.5% 

Africa 97.2% 97.0% 97.4% 76.7% 75.0% 78.3% 85.9% 84.5% 87.5% 

Asia 97.3% 97.2% 97.5% 85.3% 84.4% 86.1% 93.9% 93.3% 94.5% 

Australia 

and 

Oceania 99.0% 98.8% 99.2% 91.1% 89.0% 93.6% 96.1% 94.8% 98.0% 

Europe 97.8% 97.6% 98.1% 96.6% 96.0% 97.2% 92.9% 92.0% 93.9% 

North 

America 98.7% 98.5% 98.8% 95.6% 94.7% 96.5% 93.3% 92.3% 94.3% 

South 

America 98.9% 98.8% 99.1% 95.7% 94.8% 96.8% 90.4% 89.1% 91.8% 

 

Table 6 shows the results of the independent crop type validation at global level. For calculating the confusion matrix, maize 

in the tc-maize-main and tc-maize-second seasons was combined in one class “maize”, while spring cereals and winter 

cereals were also combined in one class “cereals”. Overall, omission errors (complementary metric to producer's accuracy) 525 

are larger than commission errors (complementary metric to user's accuracy) for both crop types. This could be explained by 

a lack of training data. Important to note is that the presented results are biased towards the areas covered by the validation 

dataset, which includes 2617 crop type records. 
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Table 6: Global crop type validation results 530 

WorldCereal 

products/validation 

dataset 

Other 

crops 
Maize Cereals 

Agreement 

by classes 

(User's 

accuracy) 

Other crops 1010 167 161 75.5% 

Maize 78 544 12 85.8% 

Cereals 31 10 604 93.6% 

Agreement by classes 

(Producer's accuracy) 90.3% 75.5% 77.7%   

Overall agreement 82.5% 

 

Figure 9 shows the results of the comparison of the WorldCereal irrigation products with (a) the FAO global map of areas 

equipped for irrigation in 2005 (Siebert et al., 2013), (b) the Landsat-Derived Global Rainfed and Irrigated-Cropland Product 

at 30 meters (LGRIP30) (Teluguntla et al., 2023), and (c) country statistics on irrigated land from the International 

Commission on Irrigation & Drainage (ICID) (ICID, 2022). The figures must be interpreted with caution since we do not 535 

know what the ground truth is. It is important to consider the following aspects:  

• Wherever the WorldCereal irrigation products show less irrigation (areas highlighted in red), it could be that not all 

the areas equipped for irrigation were actually irrigated in 2021. This is a common practice in many countries. Also, 

both the FAO and LGRIP30 maps include perennial cropland in their definitions, while the WorldCereal products 

do not. Therefore, it is logical that those two maps show more irrigation areas in some places. Finally, as mentioned 540 

in the definition of the WorldCereal irrigation product, we do not consider incidentally irrigated cropland, for 

example cropland that is only irrigated during the sowing period, which could also be a cause of the general 

underestimation of irrigated land compared to other datasets.  

• Wherever the WorldCereal irrigation products show more irrigation (areas highlighted in blue), those pixels could 

be either areas recently equipped for irrigation, or WorldCereal commission errors, or FAO’s and LGRIP30 545 

omission errors. However, we think that the hotspots in the south of the Sahel, the USA, Russia and Brazil are most 

likely WorldCereal commission errors. 
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Figure 9: Differences in percentages whilst comparing the WorldCereal combined irrigation product and: (a) the FAO global area 

equipped for irrigation in 2005 map, (b) the LGRIP30 irrigated area map for 2015, and (c) the International Commission on 550 
Irrigation and Drainage (ICID) world irrigated area dataset. The WorldCereal products show more irrigation in blue areas and 

less in red areas, compared to the other datasets.  

Figure 9b shows that there is a large difference between the WorldCereal irrigated area product and the LGRIP30 map. 

Mainly in Europe and Asia the LGRIP30 classifies significantly more land as being irrigated. To understand how these maps 
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relate to global statistics, Figure 10 shows a comparison between multiple global irrigation maps from literature and 555 

statistical datasets from the Central Intelligence Agency (CIA, 2012) and ICID (ICID, 2022).  

 

Figure 10: Comparison between global statistical datasets from the Central Intelligence Agency (CIA) and International 

Commission on Irrigation and Drainage (ICID) on irrigated area compared to five global irrigated area maps that are based on 

remote sensing data. 560 

The two statistical datasets used for this analysis show relatively similar global irrigated area values of roughly 3 million 

km2. The map from Siebert et al. (2013) is used to produce the area equipped for irrigation map of the FAO and describes the 

irrigated land around the year 2005. The studies from Meier et al. (2018) and Wu et al. (2023) mainly focus on long time 

series of NDVI data to determine irrigated areas. The LGRIP30 map is based on the Global Cropland-Extent Product at 30-m 

Resolution (GCEP30) (Thenkabail et al., 2021) to mask agricultural areas and it combines multiple spectral bands and 565 

indices of Landsat-8 from 2014-2017 to train multiple machine learning models (Teluguntla et al., 2023). From the different 

irrigation maps, the map from Siebert et al. (2013) agrees best with the statistical datasets. Both the maps from Meier et al. 

(2018) and Wu et al. (2023) show an overestimation of irrigated areas compared to the statistical datasets. The LGRIP30 

map shows a drastic overestimation of the irrigated area, which is almost double compared to the findings from the CIA and 

ICID. Finally, the WorldCereal irrigation product underestimates the global irrigated area by roughly 35 %, which is partly 570 

due to omission errors, but also caused by the fact that the WorldCereal product only focuses on temporary crops. The year 

2021 is deemed to be a relatively wet year for Europe, South America, Australia, and parts of Southern Asia (NOAA, 2022), 

so potentially many farms that are equipped for irrigation did not require irrigation. Producing more irrigated area maps for 

different years with the WorldCereal system should give more insight into this hypothesis. Combining irrigated area maps 

from different years could also add information on the irrigation frequency of each pixel.  575 
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6. Data availability 

6.1 WorldCereal products 

The WorldCereal 2021 products are available at: https://doi.org/10.5281/zenodo.7875105 (Van Tricht et al., 2023). Each 

WorldCereal product has its own archive in the repository and contains cloud-optimized geotiff (COG) files per AEZ which 

were reprojected from the original Sentinel-2 tile grid to the lat/lon WGS84 projection. Confidence layers are available 580 

separately and were downsampled to 0.0004 ° resolution. 

6.2 Reference data 

The harmonized reference data used in the WorldCereal system can be accessed in two ways. The first way to find the data is 

using the Geo-Wiki hosted reference data module available at https://worldcereal-rdm.geo-wiki.org, where users can browse 

through the different datasets, visible on a global map. All data and metadata can also be downloaded from the website. A 585 

second way to access the data is by entering the WorldCereal community in the Zenodo data repository, available at 

https://zenodo.org/communities/worldcereal-rdm/. The repository shows the harmonized data in three parts, each one having 

its own license, based on the licence of the original datasets. Furthermore, the protocol to harmonize the reference data is 

also available there. The Zenodo repository also has API access enabled. 

The new reference datasets developed for validation of the WorldCereal products are available on 590 

▪ https://doi.org/10.5281/zenodo.7825628 for the global crop type collected using the Street Imagery validation tool 

(Lesiv et al., 2023a) 

▪ https://doi.org/10.5281/zenodo.7837480 for the global validation dataset on temporary crop 2021 collected using 

Geo-Wiki (Lesiv et al., 2023b) 

7. Code availability 595 

The entire classification module code used to generate the WorldCereal 2021 products described here is publicly available 

on https://doi.org/10.5281/zenodo.7863779 (Van Tricht and Degerickx, 2023). 

8. Conclusions 

The European Space Agency (ESA) WorldCereal system has successfully produced the first global, seasonal, and 

reproducible temporary crop extent, crop type and irrigation maps at 10 m resolution. Its product suite for the year 2021 600 

presented here provides a range of seasonal maps that are fully validated. Global user's and producer's accuracies for the 

annual temporary crop product reached 88.5 % and 92.1 %, respectively. Validation numbers of the other product layers 

exhibit a spatial bias due to the limited availability of independent validation samples, or could not be quantitatively 

https://doi.org/10.5194/essd-2023-184
Preprint. Discussion started: 24 May 2023
c© Author(s) 2023. CC BY 4.0 License.



   

 

30 

 

determined due to a lack of sufficient validation samples. Despite the known challenges and complexities associated with the 

mapping of dynamic agricultural landscapes at large spatial scales, our efforts have demonstrated the capabilities of the 605 

dynamic open-source WorldCereal system to generate high-quality products at global scale and with high spatial detail, 

thereby maximizing their applicability and relevance for local agricultural monitoring purposes. As such, we strongly believe 

the WorldCereal system provides a vital tool for policymakers, international organizations, and researchers to better 

understand global to regional crop and irrigation patterns and inform decision-making related to food security and 

sustainable agriculture. The complete 2021 WorldCereal product suite can also act as a foundation for a worldwide crop 610 

monitoring system, providing a significant step forward in addressing the challenge of global food security. Due to these 

significant potential contributions, we want to strongly emphasize the importance of continuing the development of the 

system beyond this 2021 showcase. Moving forward, we recommend focusing on enhancing the quality of the products in 

areas where confidence is lowest by forging local/regional collaborations in improved collection of ground truth data which 

will further enhance the local applicability of these products. Such continued community efforts are crucial to support further 615 

improvements to the system and push the boundaries for global agricultural mapping from space.  
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